
COMP3161/COMP9164

Preliminaries Exercises

Liam O’Connor, Johannes Åman Pohjola, Thomas Sewell *

September 17, 2024

1. Strange Loops: The following system, based on a system called Miu, is perhaps famously mentioned in
Douglas Hofstadter’s book, Gödel, Escher, Bach.

MI Miu
1

xI Miu

xIU Miu
2

Mx Miu

Mxx Miu
3

xIIIy Miu

xUy Miu
4

xUUy Miu

xy Miu
5

(a) [⋆] Is MUII Miu derivable? If so, show the derivation tree. If not, explain why not.

(b) [⋆⋆] Is
xIU Miu

xI Miu
admissible? Is it derivable? Justify your answer. (Your justification can be handwavy—

if you try to prove your answer, this gets way harder than two stars!)

(c) [⋆⋆⋆⋆] Perhaps famously, MU Miu is not admissible. Prove this using rule induction. Hint : Try proving
something related to the number of Is in the string.

(d) Here is another language, which we’ll call Mi:

MI Mi
A

Mx Mi

Mxx Mi
B

xIIIIIIy Mi

xy Mi
C

i. [⋆⋆⋆] Prove using rule induction that all strings in Mi could be expressed as follows, for some k
and some i, where 2k − 6i > 0 (where Cn is the character C repeated n times):

M I2
k−6i

ii. We will now prove the opposite claim that, for all k and i, assuming 2k − 6i > 0:

M I2
k−6i Mi

To prove this we will need a few lemmas which we will prove separately.
α) [⋆⋆] Prove, using induction on the natural number k (i.e when k = 0 and when k = k′ + 1),

that M I2
k

Mi

β) [⋆⋆] Prove, using induction on the natural number i, that M Ik Mi implies M Ik−6i Mi, assuming
k − 6i > 0.

Hence, as we know M I2
k

Mi for all k from lemma α, we can conclude from lemma β that M I2
k−6i Mi

for all k and all i where 2k − 6i > 0 by modus ponens.

These two parts prove that the language Mi is exactly characterised by the formulation M I2
k−6i where

2k − 6i > 0. A very useful result!

iii. [⋆] Hence prove or disprove that the following rule is admissible in Mi:

Mxx Mi

Mx Mi
Lem1

iv. [⋆] Why is the following rule not admissible in Mi?

xy Mi

xIIIIIIy Mi
Lem2

*Minor revisions; Liam is the main author.

1

v. [⋆⋆⋆] Prove that, for all s, s Mi =⇒ s Miu. Note that using straightforward rule induction
appears to necessitate Lem2 above, which we know is not admissible. Try proving using the
characterisation we have already developed.

2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but
the original invention is not his) is called the ΦΨ system. Unlike the Miu language discussed above, this
language is not comprised of a single judgement, but of a ternary relation, written x Φ y Ψ z, where x, y
and z are strings of hyphens (i.e ‘-’), which may be empty (ϵ). The system is defined as follows:

ϵ Φ x Ψ x
B

x Φ y Ψ z

-x Φ y Ψ -z
I

(a) [⋆] Prove that -- Φ --- Ψ -----.

(b) [⋆] Is the following rule admissible? Is it derivable? Explain your answer

-x Φ y Ψ -z

x Φ y Ψ z
I ′

(c) [⋆⋆] Show that x Φ ϵ Ψ x, for all hyphen strings x, by doing induction on the length of the hyphen
string (where x = ϵ and x = -x′).

(d) [⋆⋆⋆] Show that if -x Φ y Ψ z then x Φ -y Ψ z, for all hyphen strings x, y and z, by doing induction
on the size of x.

(e) [⋆⋆] Show that x Φ y Ψ z implies y Φ x Ψ z.

(f) [⋆⋆] Have you figured out what the ΦΨ system actually is? Prove that if -x Φ -y Ψ -z, then z = -x+y

(where -x is a hyphen string of length x).

3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language 1:

x ∈ N
x Expr

Var.
e1 Expr e2 Expr

e1e2 Expr
Appl.

e Expr

λe Expr
Abst.

e Expr

(e) Expr
Paren.

(a) [⋆] Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that
has multiple parse trees.

(b) [⋆⋆] Develop a new (unambiguous) grammar that encodes the left associativity of application, that is
1 2 3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should
extend as far as possible, i.e λ1 2 is equivalent to λ(1 2) not (λ1)2.

(c) [⋆⋆⋆] Prove that all expressions in your grammar are representable in Expr, that is, that your grammar
describes only strings that are in Expr.

4. Regular Expressions: Consider this language used to describe regular expressions consisting of:

� single characters, written c

� Sequential composition, written R;R

� Nondeterministic choice, written R | R.

� Kleene star, written R⋆.

� Grouping parentheses.

c Char

c R

a R b R

a; b R

a R b R

a | b R

a R

a ⋆R

a R

(a) R

(a) [⋆] In what way is this grammar ambiguous? Identify an expression with multiple parse trees.

(b) [⋆] Devise an alternative grammar that is unambiguous, order of operations should be such that

a; b; c ⋆ | a; d | e

is parsed with the grouping indicated by the parentheses in:

(a; (b; (c⋆))) | ((a; d) | e)

1if you’re interested, it’s called lambda calculus, with de Bruijn indices syntax, not that it’s relevant to the question!

Page 2

5. Key Combinations: Consider the language used to document key combinations:

x ∈ {a,b, . . . ,Shift}
x K

Key
c1 K c2 K

c1✚c2 K
Hold

c1 K c2 K

c1c2 K
Then

c K

(c) K
Paren

For example Ctrl ✚ C is a string in this language.

(a) [⋆] Find an example of ambiguity in this language.

(b) [⋆] Eliminate ambiguity such that
q w ✚ e r t

is parsed with this grouping:
(q ((w ✚ e)(r t)))

and such that
Ctrl ✚ Shift ⇑ ✚ Q

is parsed with the following grouping:

(Ctrl ✚ Shift ⇑)✚ Q

Page 3

