COMP3161/COMP9164
Preliminaries Exercises

Liam O’Connor, Johannes Aman Pohjola, Thomas Sewell *

September 17, 2024

1. Strange Loops: The following system, based on a system called M1uU, is perhaps famously mentioned in
Douglas Hofstadter’s book, Gédel, Escher, Bach.

zI Mi1u Mz MI1u zIIIy Miu =~ 2UUy MIU5

1
MI MI1u xIU MI1u Mzxxz Miu xUy MI1u xy MI1u
(a) [*] Is MUII M1u derivable? If so, show the derivation tree. If not, explain why not.
IU Miu
(b) [x] Is :EITIU admissible? Is it derivable? Justify your answer. (Your justification can be handwavy—
x

if you try to prove your answer, this gets way harder than two stars!)

(¢c) [#**%] Perhaps famously, MU MIU is not admissible. Prove this using rule induction. Hint: Try proving
something related to the number of Is in the string.

(d) Here is another language, which we’ll call Mr:

Mz M1 B zIIIIIIy MIC
MI M1 Mxx MI ry M1

i. [#**] Prove using rule induction that all strings in MI could be expressed as follows, for some k
and some 4, where 28 — 6i > 0 (where C" is the character C repeated n times):

M Iz’uai
ii. We will now prove the opposite claim that, for all ¥ and 4, assuming 2% — 6i > 0:
M 12" 6 M1

To prove this we will need a few lemmas which we will prove separately.
«) [xx] Prove, using induction on the natural number k (i.e when k¥ = 0 and when k = k' + 1),

that M 12" M

B) [*%] Prove, using induction on the natural number 7, that M I¥ M1 implies M I¥~6¢ M, assuming
k—6i>0.

Hence, as we know M I2° M for all k from lemma , we can conclude from lemma 3 that M I2° =61 M
for all k and all i where 2 — 6i > 0 by modus ponens.

These two parts prove that the language MI is exactly characterised by the formulation M 12°=6i where
2F — 6i > 0. A very useful result!
iii. [*] Hence prove or disprove that the following rule is admissible in MI:

Mxx M1
Mx M1

LEM;

iv. [*x] Why is the following rule not admissible in M1?

xy M1

———LEM
2IIIIIIy M1~ 2

*Minor revisions; Liam is the main author.

v. [%**] Prove that, for all s, s Mi = s Miu. Note that using straightforward rule induction
appears to necessitate LEMs above, which we know is not admissible. Try proving using the
characterisation we have already developed.

2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but
the original invention is not his) is called the ®¥ system. Unlike the M1U language discussed above, this
language is not comprised of a single judgement, but of a ternary relation, written x ® y ¥ z, where x, y
and z are strings of hyphens (i.e ‘=’), which may be empty (€). The system is defined as follows:

Py Wz
ePax Vo -x ®y U -z

(a) [x] Prove that -—- ® ——— ¥ ————-)
(b) [%] Is the following rule admissible? Is it derivable? Explain your answer
oy Wz,
Py ¥z

(¢) [*x*] Show that ® ¢ U z, for all hyphen strings z, by doing induction on the length of the hyphen
string (where = ¢ and & = -z’).

(d) [**%] Show that if - ® y U 2z then & ® -y ¥ z, for all hyphen strings z, y and z, by doing induction
on the size of .

(e) [**] Show that x ® y ¥ z implies y & = U z.
(f) [%x] Have you figured out what the ®¥ system actually is? Prove that if =% & -¥ ¥ -# then z = -**¥
(where -* is a hyphen string of length).

3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language ':

eN E E. E E
v VAR. G ZIPT 2 BT A ppy, EEPT pApgr. S PPN g,
x Expr e1ea Expr Xe Expr (e) Expr

(a) [#] Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that
has multiple parse trees.

(b) [#%] Develop a new (unambiguous) grammar that encodes the left associativity of application, that is
1 2 3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should
extend as far as possible, i.e A1 2 is equivalent to A(1 2) not (A1)2.

(¢) [xxx] Prove that all expressions in your grammar are representable in Expr, that is, that your grammar
describes only strings that are in Fxpr.

4. Regular Expressions: Consider this language used to describe regular expressions consisting of:

e single characters, written c

Sequential composition, written R; R

Nondeterministic choice, written R | R.

Kleene star, written Rx.

e Grouping parentheses.

c Char a R bR aR bR aR a R
cR a;b R albR axR (o) R

(a) [x] In what way is this grammar ambiguous? Identify an expression with multiple parse trees.

(b) [x] Devise an alternative grammar that is unambiguous, order of operations should be such that
ajbjcx |a;d | e
is parsed with the grouping indicated by the parentheses in:

(a5 (b; (cx))) [((2;9) | e)

Lif you’re interested, it’s called lambda calculus, with de Bruijn indices syntax, not that it’s relevant to the question!

Page 2

5. Key Combinations: Consider the language used to document key combinations:

x € {a,b,...,Shift} aaK K aK K cK
—— ey Hold ————— Then ———Paren
K ctes K ace K (o) K

For example [Cul] + is a string in this language.
(a) [x] Find an example of ambiguity in this language.

(b) [%] Eliminate ambiguity such that

] * []
([a] (([] #* [1)([] 1))
[Cit] # [Ehe] + Q]

is parsed with this grouping:
and such that

is parsed with the following grouping:

([Cr] + (S)+ (9]

Page 3

