COMP3161/COMP9164 Preliminaries Exercises

Liam O'Connor, Johannes Åman Pohjola, Thomas Sewell *

September 17, 2024

1. Strange Loops: The following system, based on a system called MIU, is perhaps famously mentioned in Douglas Hofstadter's book, *Gödel, Escher, Bach.*

$$\frac{1}{\text{MI MIU}} 1 \quad \frac{x \text{I MIU}}{x \text{IU MIU}} 2 \quad \frac{\text{M}x \text{ MIU}}{\text{M}xx \text{ MIU}} 3 \quad \frac{x \text{III}y \text{ MIU}}{x \text{U}y \text{ MIU}} 4 \quad \frac{x \text{UU}y \text{ MIU}}{xy \text{ MIU}} 5$$

- (a) $[\star]$ Is MUII MIU derivable? If so, show the derivation tree. If not, explain why not.
- (b) $[\star\star]$ Is $\frac{x IU M_{IU}}{x I M_{IU}}$ admissible? Is it derivable? Justify your answer. (Your justification can be handwavy if you try to *prove* your answer, this gets way harder than two stars!)
- (c) [****] Perhaps famously, MU MIU is not admissible. Prove this using rule induction. *Hint*: Try proving something related to the number of Is in the string.
- (d) Here is another language, which we'll call MI:

$$\frac{1}{\mathrm{MI} \mathrm{MI}} A - \frac{\mathrm{M}x \mathrm{MI}}{\mathrm{M}xx \mathrm{MI}} B - \frac{x \mathrm{IIIIII}y \mathrm{MI}}{xy \mathrm{MI}} C$$

i. $[\star\star\star]$ Prove using rule induction that all strings in MI could be expressed as follows, for some k and some i, where $2^k - 6i > 0$ (where \mathbb{C}^n is the character C repeated n times):

 $M I^{2^k - 6i}$

ii. We will now prove the opposite claim that, for all k and i, assuming $2^k - 6i > 0$:

$$M I^{2^{\kappa}-6i} MI$$

To prove this we will need a few lemmas which we will prove separately.

- α) [**] Prove, using induction on the natural number k (i.e when k = 0 and when k = k' + 1), that $M I^{2^k} MI$
- β) [**] Prove, using induction on the natural number *i*, that $M I^k MI$ implies $M I^{k-6i} MI$, assuming k 6i > 0.

Hence, as we know $\mathbb{M} \mathbb{I}^{2^k}$ MI for all k from lemma α , we can conclude from lemma β that $\mathbb{M} \mathbb{I}^{2^k-6i}$ MI for all k and all i where $2^k - 6i > 0$ by modus ponens.

These two parts prove that the language MI is exactly characterised by the formulation $M I^{2^k-6i}$ where $2^k - 6i > 0$. A very useful result!

iii. $[\star]$ Hence prove or disprove that the following rule is admissible in MI:

$$\frac{Mxx MI}{Mx MI} LEM_1$$

iv. $[\star]$ Why is the following rule **not** admissible in MI?

$$\frac{xy \text{ MI}}{x \text{IIIIII} y \text{ MI}} \text{Lem}_2$$

^{*}Minor revisions; Liam is the main author.

- v. $[\star\star\star]$ Prove that, for all s, s MI $\implies s$ MIU. Note that using straightforward rule induction appears to necessitate LEM₂ above, which we know is not admissible. Try proving using the characterisation we have already developed.
- 2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but the original invention is not his) is called the $\Phi\Psi$ system. Unlike the MIU language discussed above, this language is not comprised of a single judgement, but of a ternary *relation*, written $x \Phi y \Psi z$, where x, yand z are strings of hyphens (i.e '-'), which may be empty (ϵ). The system is defined as follows:

$$\frac{x \Phi y \Psi z}{\epsilon \Phi x \Psi x} B \quad \frac{x \Phi y \Psi z}{-x \Phi y \Psi - z} I$$

- (a) $[\star]$ Prove that $--\Phi ---\Psi -----$.
- (b) [*] Is the following rule admissible? Is it derivable? Explain your answer

$$\frac{-x \Phi y \Psi - z}{x \Phi y \Psi z} I'$$

- (c) $[\star\star]$ Show that $x \Phi \in \Psi x$, for all hyphen strings x, by doing induction on the length of the hyphen string (where $x = \epsilon$ and x = -x').
- (d) $[\star\star\star]$ Show that if $\neg x \Phi y \Psi z$ then $x \Phi \neg y \Psi z$, for all hyphen strings x, y and z, by doing induction on the size of x.
- (e) $[\star\star]$ Show that $x \Phi y \Psi z$ implies $y \Phi x \Psi z$.
- (f) $[\star\star]$ Have you figured out what the $\Phi\Psi$ system actually is? Prove that if $-^x \Phi ^y \Psi ^z$, then $z = -^{x+y}$ (where $-^x$ is a hyphen string of length x).
- 3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language ¹:

$$\frac{x \in \mathbb{N}}{x \ Expr} \text{VAR.} \quad \frac{e_1 \ Expr \ e_2 \ Expr}{e_1 e_2 \ Expr} \text{APPL.} \quad \frac{e \ Expr}{\lambda e \ Expr} \text{ABST.} \quad \frac{e \ Expr}{(e) \ Expr} \text{PAREN}$$

- (a) [★] Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that has multiple parse trees.
- (b) $[\star\star]$ Develop a new (unambiguous) grammar that encodes the left associativity of application, that is 1 2 3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should extend as far as possible, i.e $\lambda 1$ 2 is equivalent to $\lambda(1 2)$ not ($\lambda 1$)2.
- (c) $[\star\star\star\star]$ Prove that all expressions in your grammar are representable in *Expr*, that is, that your grammar describes only strings that are in *Expr*.
- 4. Regular Expressions: Consider this language used to describe regular expressions consisting of:
 - single characters, written c
 - Sequential composition, written R; R
 - Nondeterministic choice, written $R \mid R$.
 - Kleene star, written $R\star$.
 - Grouping parentheses.

$$\frac{\mathbf{c} \operatorname{Char}}{\mathbf{c} \mathbf{R}} \quad \frac{a \mathbf{R} \quad b \mathbf{R}}{a; b \mathbf{R}} \quad \frac{a \mathbf{R} \quad b \mathbf{R}}{a \mid b \mathbf{R}} \quad \frac{a \mathbf{R}}{a \star \mathbf{R}} \quad \frac{a \mathbf{R}}{(a) \mathbf{R}}$$

- (a) $[\star]$ In what way is this grammar *ambiguous*? Identify an expression with multiple parse trees.
- (b) $[\star]$ Devise an alternative grammar that is unambiguous, order of operations should be such that

 $\texttt{a};\texttt{b};\texttt{c}\star ~\mid \texttt{a};\texttt{d} \mid \texttt{e}$

is parsed with the grouping indicated by the parentheses in:

$$(a; (b; (c\star))) | ((a; d) | e)$$

¹if you're interested, it's called *lambda calculus*, with *de Bruijn indices* syntax, not that it's relevant to the question!

5. Key Combinations: Consider the language used to document key combinations:

$$\frac{x \in \{a, b, \dots, Shift\}}{\boxed{x}} Key \quad \frac{c_1 \mathbf{K} c_2 \mathbf{K}}{c_1 + c_2 \mathbf{K}} Hold \quad \frac{c_1 \mathbf{K} c_2 \mathbf{K}}{c_1 c_2 \mathbf{K}} Then \quad \frac{c \mathbf{K}}{(c) \mathbf{K}} Paren$$

For example $\boxed{Ctrl} + \boxed{C}$ is a string in this language.

(a) $[\star]$ Find an example of ambiguity in this language.

(b) $[\star]$ Eliminate ambiguity such that

is parsed with this grouping:

and such that

is parsed with the following grouping:

